a2 United States Patent

Potkonjak

US009471376B2

US 9,471,376 B2
*QOct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

SCHEDULING AND/OR ORGANIZING TASK
EXECUTION FOR A TARGET COMPUTING
PLATFORM

Applicant: EMPIRE TECHNOLOGY
DEVELOPMENT LLC, Wilmington,

DE (US)

Inventor: Miodrag Potkonjak, Los Angeles, CA
(US)

Assignee: Empire Technology Development
LLC, Wilmington, DE (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 264 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/171,323
Filed:  Feb. 3, 2014

Prior Publication Data

US 2014/0196046 Al Jul. 10, 2014

Related U.S. Application Data

Continuation of application No. 12/426,139, filed on
Apr. 17, 2009, now Pat. No. 8,661,443.

Int. CL.

GO6F 9/46 (2006.01)

GO6F 9/48 (2006.01)

U.S. CL

CPC ......... GO6F 9/4881 (2013.01); GOGF 9/4887

(2013.01); Y02B 60/144 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,814,845 A * 9/1998 Carley ................ HO1L 27/092
257/206
6/2011 Hsu ....ccocvevvinnn. GOG6F 1/3203

713/1

7,971,073 B2 *

(Continued)

FOREIGN PATENT DOCUMENTS

JP 2003-140787 5/2003
JP 2003140787 A 5/2003

(Continued)

OTHER PUBLICATIONS

Hong, et al. (“On-Line Scheduling of Hard Real-Time Tasks on
Variable Voltage Processor”, International Conference on Com-
puter-Aided Design, 1998, pp. 653-656.*

(Continued)

Primary Examiner — Wissam Rashid
(74) Attorney, Agent, or Firm — Moritt Hock & Hamroff
LLP; Steven S. Rubin, Esq.

(57) ABSTRACT

Techniques are generally described relating to methods,
apparatuses and articles of manufactures for scheduling
and/or organizing execution of tasks on a computing plat-
form. In various embodiments, the method may include
identifying successively one or more critical time intervals,
and scheduling and/or organizing task execution for each of
the one or more identified critical time intervals. In various
embodiments, one or more tasks to be executed may be
scheduled to execute based in part on their execution
completion deadlines. In various embodiments, organizing
one or more tasks to execute may include selecting a virtual
operating mode of the platform using multiple operating
speeds lying on a convexity energy-speed envelope of the
platform. Intra-task delay caused by switching operating
mode may be considered. Other embodiments may also be
described and/or claimed.

20 Claims, 5 Drawing Sheets

Identifying Critical Time Intervals ~ 102

Select A Feasible Time Interval With Largest Lower
Bound of Average Operaling Speed As Critical Time
Intervals 112

|

‘Schedule Task Execution For The Critical Time Interval 104

Schedule Tasks By Earfiest Deadline
122

Sefect A Real or Virtual Operating Mode
124

|

Repast Identiy and Schedule if mare tasks to schedule 108

Remove Critica} Time Intervals and Adjust Arrival
Time and Deadlines




US 9,471,376 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2005/0138452 Al
2010/0241892 Al
2010/0287404 Al
2010/0287409 Al

6/2005 Misaka et al.
9/2010 Potkonjak
11/2010 Potkonjak
11/2010 Potkonjak

FOREIGN PATENT DOCUMENTS

JP 2005-182223 A 7/2005
JP 2005-222536 8/2005
JP 2005222536 A 8/2005

OTHER PUBLICATIONS

Rotenberg, E., Using variable-MHz microprocessors to efficiently
handle uncertainty in real-time systems, MICRO-34, Proceedings of
the 34th ACM/IEEE  International  Symposium  on
Microarchitecture, Dec. 1-5, 2001, pp. 28-39.

Chandrakasan, A. P. et al., “Optimizing Power Using Transforma-
tions,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Jan. 1995, pp. 12-31, vol. 14, No. 1.

Hong, I. et al., “Power Optimization of Variable-Voltage Core-
Based Systems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Dec. 1999, pp. 1702-1714, vol. 18,
No. 12.

Qu, G. et al., “Techniques for Energy-Efficient Communication
Pipeline Design,” IEEE Transactions on Very Large Scale Integra-
tion (VSLI) Systems, Oct. 2002, pp. 542-549, vol. 10, No. 5.
Wong, J. L. et al., “Power minimization in QoS sensitive systems,”
IEEE Transactions on Very Large Scale Integration (VSLI) Sys-
tems, Jun. 2004, pp. 553-561, vol. 12, No. 6.

Kirovski, D. et al., “System-Level Synthesis of Low-Power Hard
Real-Time Systems,” Design Automation Conference, Jun. 1997,
pp. 697-702.

Hong, 1. et al., “Power Optimization using Divide-and-Conquer
Techniques for Minimization of the Number of Operations,” Inter-
national Conference on Computer-Aided Design, 1997, pp. 108-
111.

Shin, D. et al., “Low-energy intra-task voltage scheduling using
static timing analysis,” Design Automation Conference, Jun. 18,
2001, pp. 438-443.

Hong, I. et al., “On-Line Scheduling of Hard Real-Time Tasks on
Variable Voltage Processor,” International Conference on Com-
puter-Aided Design, 1998, pp. 653-656.

Hong, L. et al., “Synthesis Techniques for Low-Power Hard Real-
Time Systems on Variable-Voltage Processor,” Real-Time System
Symposium, 1998, pp. 178-187.

Dabiri, F. et al., “Energy minimization for real-time systems with
non-convex and discrete operation modes,” Date Conference, 2009,
pp. 1416-1421.

Alkabani, Y. et al., “N-version temperature-aware scheduling and
binding,” International Symposium on Low Power Electronics and
Design, Aug. 19, 2009, pp. 331-334.

Vahdatpour, A. et al, “Leakage Minimization Using Self Sensing
and Thermal Management,” International Symposium on Low
Power Electronics and Design, Aug. 18, 2010, pp. 265-270.
Pillai, P. et al., “Real-time dynamic voltage scaling for low-power
embedded operating systems,” SIGOPS Oper. Syst. Rev., 2001, pp.
89-102, vol. 35, No. 5.

Andrei, A. et al., “Overhead-Conscious Voltage Selection for
Dynamic and Leakage Energy Reduction of Time-Constrained
Systems,” Design, automation and Test in Europe Conference and
Exhibition, 2004, 6 pages, vol. 1.

Chandrakasan, A. P. et al.,, “HYPER-LP: A System for Power
Minimization Using Architectural Transformations,” International
Conference on Computer-Aided Design, 1992, pp. 300-303.

* cited by examiner



U.S. Patent Oct. 18, 2016 Sheet 1 of 5 US 9,471,376 B2

Identifying Critical Time Intervals ~ 102

Select A Feasible Time Interval With Largest Lower
—> Bound of Average Operating Speed As Critical Time
Intervals 112

A

Schedule Task Execution For The Critical Time Interval 104

Schedule Tasks By Earliest Deadline
122

Select A Real or Virtual Operating Mode
124

A 4

Repeat Identify and Schedule if more tasks to schedule 106

Remove Critical Time Intervals and Adjust Arrival
Time and Deadlines
132

Figure 1



US 9,471,376 B2

Sheet 2 of 5

Oct. 18, 2016

U.S. Patent

q9°OI1A v OIA

poayiaaQ
oy g Suruus . poady %5 .S g
< \ \\ B _ _ m
|
|
\ & P NM«
fy
& |||||||||||||||| I 2124 4a2d
— § uonduinsuo)
/ —~ paadg — AS1ousg
(/T4 Y 707 Y




U.S. Patent Oct. 18, 2016 Sheet 3 of 5

FEnergy consumption per cycle

US 9,471,376 B2

Figure 4

Y
S 302
%\ =
S =
S,
< -
)
H
g e
B3
<
)
Q
2 T
S
Ry
speed
Figure 3
402
| m* ':f;:
\'k""
I o
speed



§ TdN0Ld

d )
m\ Ty - _M

o G

b W d A

US 9,471,376 B2

1
¥

m.mmx: E\w?ﬁu:m&
{eeg) aonioas {188 soveoug
FHY AT HON T AOWIY

Sheet 4 of 5

Oct. 18, 2016

U.S. Patent

TR VOl NS !

e o oo e e o o e o e e

i
§
i
1
§
i
i
! f
t i
i ——eeee—_- V-V 0 |
F :
i ;P e y, 1 |
i , A =5 £ |
i ' Vi NOLL P
i p—— ; : ML LA i i
ik .smm m H a1 P
' AT ) : T E WS MR I |
SR O z - : CRLVINOREY iYL -
_mfuiw FEATIS R E H .
T ot e ﬁ il i
; {128} = % : |
M BT AR e i : W i
w 3 PP R z f {xze) i}
g % M ! ROV YN .
i D ) 5 i Y L T IEHS i
W : s 507 AN BN TR AR Al i RO SO LA M i
g i ; |
b o P 4
i iy { 3 i
Fi s o H
, YRR P i ‘ »
by , oM ;o : (175} PELISAS ORELVARAC) i
p L e o b iy
7 / /O M M
i w M Ty AEO WA WIEE m §
f w . P
- ]
i s i
{
i



U.S. Patent Oct. 18, 2016 Sheet 5 of 5 US 9,471,376 B2

800 An a;éét&& Of manufeciure having & compuier grogram gredudt

32 & computer readiable sforage medinm

-
§34 Instructions fo schedule sxecution of tasks on & tergst computing platform

o or o instruntions for dentifying & ollical time Inteneal

FIGURE 6



US 9,471,376 B2

1
SCHEDULING AND/OR ORGANIZING TASK
EXECUTION FOR A TARGET COMPUTING
PLATFORM

CROSS REFERENCE TO RELATED
APPLICATIONS APPLICATION

This application is a continuation under 35 U.S.C. §120 of
U.S. application Ser. No. 12/426,139 filed on Apr. 17, 2009,
now U.S. Pat. No. 8,661,443 the entirety of which is hereby
incorporated by reference.

BACKGROUND

Energy consumption is often recognized as one of the
most important parameters in designing modern portable
electronic and wireless systems in today’s very large scale
integration (VLSI) circuit design. Among the various low
power techniques at different levels of abstraction, dynamic
voltage scheduling (DVS) is an often used technique for
reducing power and energy consumption during system
operation. DVS aims at reducing the dynamic/static power
consumption by scaling down operational frequency and
circuit supply voltage. In has been demonstrated that
dynamic energy savings can be accomplished by simulta-
neously varying the supply voltage (V) and the threshold
voltage (V,) through adaptive body biasing. Several
researches have been performed to solve task-scheduling on
DVS-enabled systems to achieve dynamic energy reduction.
For example, heuristics have been proposed for periodic
tasks in a multiprocessor.

Research to-date on energy consumption has also increas-
ingly focus on leakage energy. As device sizes continue to
decrease due to advances in technological manufacturability,
leakage energy dissipation is becoming more and more
important. For the 70-nm process, leakage power is smaller
than dynamic power, for the 50-nm process, they become
comparable, while for the 35-nm process, leakage power is
larger than dynamic power. Hence, it is often predicted that
in less than a decade, leakage power will dominate in any
energy consumption consideration.

However, low power research has traditionally focused on
a power model where the relationship between power con-
sumption and processor speed is convex. Convexity has a
number of ramifications when energy is minimized using
variable voltage strategies. Chief among them may be the
assumption that with respect to energy consumption, it is
optimal to execute a task with the executing processor
operating at a constant speed. However, the union of several
technological, integrated circuits, architectural, operating
systems, and application factors is increasingly creating
systems where the mapping from the speed of execution
(that is the inverse of the time required to complete one cycle
and execute an operation) and energy consumption per
operation (ES) is non-convex. Non-convex energy-speed
models will dominate the wide spectrum of pending and
future energy-sensitive systems. For example, in heteroge-
neous multiprocessor multicore system-on-chips, different
cores have different ES functions and the overall relation-
ship between processor speed and energy per operation is
not convex. Likewise, total leakage and dynamic energy
does not have a convex relationship with processor speed, as
leakage current increases when threshold voltage is lowered
to increase the processor speed. Incorporation of new high
bandwidth on-chip interconnect technologies, such as
nanowires, RF, photonic crystals-based optical interconnect,
and plasmonics communication networks compounded with

20

25

35

40

45

55

2

a need for thermal management will have further ramifica-
tions on the non-convex ES relationship. Instruction level
parallelism and effective speed also has a highly non-convex
and non-continuous function. Hence, simplified convex
energy models assumed in traditional approaches for tack-
ling DVS problem may no longer be effective.

Attempts have been made to develop non-convex meth-
ods to achieve energy consumption reduction. DVS tech-
niques in the presence of discrete voltage levels for qua-
dratics power models have been proposed. However, the
present disclosure identified that a number of these
approaches do not appear optimal and are complex, requir-
ing substantial computing. Further, the present disclosure
appreciates that scaling the supply voltage in order to reduce
the power consumption has a side-effect on the circuit delay
and hence the operational frequency. Each time a proces-
sor’s supply voltage is switched, the change requires a
certain amount of extra energy and time. Thus, the present
disclosure identifies that transition overhead is another
important issue that should be considered, but has been
ignored in conventional voltage scaling techniques.

BRIEF DESCRIPTION OF THE DRAWINGS

Subject matter is particularly pointed out and distinctly
claimed in the concluding portion of the specification. The
foregoing and other features of this disclosure will become
more fully apparent from the following description and
appended claims, taken in conjunction with the accompa-
nying drawings. Understanding that these drawings depict
only several embodiments in accordance with the disclosure
and are, therefore, not to be considered limiting of its scope,
the disclosure will be described with additional specificity
and detail through use of the accompanying drawings.
Various embodiments will be described referencing the
accompanying drawings in which like references denote
similar elements, and in which:

FIG. 1 illustrates a method for scheduling and/or orga-
nizing task executions on a target computing platform, in
accordance with various embodiments;

FIGS. 2a-2b illustrate how a processor may operate at any
virtual operating speed, in accordance with various embodi-
ments;

FIG. 3 illustrates a lower convex curve for an energy-
speed domain, in accordance with various embodiments;

FIG. 4 illustrates a modified lower convex curve for an
energy-speed domain, taking into consideration of intra-task
energy overhead caused by mode switching, in accordance
with various embodiments;

FIG. 5 is an example computer system suitable for prac-
ticing various embodiments; and

FIG. 6 is an example article of manufacture having a
computer program product with instructions, all arranged in
accordance with the present disclosure.

DETAILED DESCRIPTION

The following description sets forth various examples
along with specific details to provide a thorough understand-
ing of claimed subject matter. It will be understood by those
skilled in the art, however, the claimed subject matter may
be practiced without some or more of the specific details
disclosed herein. Further, in some circumstances, well-
known methods, procedures, systems, components and/or
circuits have not been described in detail in order to avoid
unnecessarily obscuring claimed subject matter. In the fol-
lowing detailed description, reference is made to the accom-



US 9,471,376 B2

3

panying drawings, which form a part hereof. In the draw-
ings, similar symbols typically identify similar components,
unless context dictates otherwise. The illustrative embodi-
ments described in the detailed description, drawings, and
claims are not meant to be limiting. Other embodiments may
be utilized, and other changes may be made, without depart-
ing from the spirit or scope of the subject matter presented
here. It will be readily understood that the aspects of the
present disclosure, as generally described herein, and illus-
trated in the Figures, may be arranged, substituted, com-
bined, and designed in a wide variety of different configu-
rations, all of which are explicitly contemplated and make
part of this disclosure.
In the following description, algorithms and/or symbolic
representations of operation’s on data bits and/or binary
digital signals stored within a computing system, such as
within a computer and/or computing system memory may be
presented. An algorithm is generally considered to be a
self-consistent sequence of operations and/or similar pro-
cessing leading to a desired result where the operations may
involve physical manipulations of physical quantities that
may take the form of electrical, magnetic and/or electro-
magnetic signals capable of being stored, transferred, com-
bined, compared and/or otherwise manipulated. In various
contexts such signals may be referred to as bits, data, values,
elements, symbols, characters, terms, numbers, numerals,
etc. Those skilled in the art will recognize, however, that
such terms may be used to connote physical quantities.
Hence, when terms such as “storing”, “processing”, “retriev-
ing”, “calculating”, “determining” etc. are used in this
description they may refer to the actions of a computing
platform, such as a computer or a similar electronic com-
puting device such as a cellular telephone, that manipulates
and/or transforms data represented as physical quantities
including electronic and/or magnetic quantities within the
computing platform’s processors, memories, registers, etc.
This disclosure is drawn, inter alia, to methods, apparatus,
systems and computer program products related to sched-
uling task execution on a target computing platform.
FIG. 1 illustrates a method 100 for scheduling and/or
organizing task executions on a target computing platform,
in accordance with various embodiments of the present
disclosure. As will be described in more details below,
method 100 may optimally schedule execution of tasks on a
target computing platform, reducing or minimizing an
amount of energy consumed in executing the task. For the
purpose of the present disclosure, the set of tasks to be
scheduled for execution may be represented by J={t,, . . .,
T,}- Bach task may be characterized by t=(a;, b;, R, C,),
where
a, is the arrival time of task i
b, is the execution completion deadline (or simply, dead-
line) of task i

R, is the required clock cycles of the target computing
platform to process or execute task i

C, is the average switching capacity of the target com-
puting platform of task i.

The target computing platform may be characterized by
their operation modes', 2={m,, . . . , m,}, where each mode
is a pair m~(e,, s,), where

e, is the energy consumption per clock cycle in the j*

mode

s, is the processor speed when running in the j”

mode
! In the present disclosure the term ‘operation mode’ is used
rather than ‘supply voltage’ or ‘speed’. The reason is

10

15

20

25

30

35

40

45

50

55

60

65

4

because current technologies can reduce energy dissipation
not only by changing supply voltage, but also by reducing
bias-voltage.

Thus, the problem of optimally scheduling the set of tasks
for execution on the target computing platform, reducing or
minimizing the amount of energy consumed in executing the
set of tasks, may be considered as the problem of

minimize [,,7P(E())dt (6]

where P( ) is a power consumption function, and
E(t) is a mapping function defining the processor mode
and the scheduled task at time t.
Equation (1) may be restated from the perspective of the
amount of clock cycles required to execute the tasks, i.e.,

R 2
minimize Z e(s;))AR
0

Accordingly, solving the problem may be considered as
finding the mapping function v (t) that defines the scheduled
task at time t, such that the total energy consumption during
the [0,T] period is minimized or reduced to a desired level.

According to embodiment of the present disclosure,
method 100 may include one or more functions or process-
ing operations illustrated by blocks 102, 104 and/or 106. As
illustrated, processing may start at block 102, identifying
critical time interval, where a first critical time interval [a, b]
of'the [0,T] period is identified. From block 102, method 100
may proceed to block 104, schedule task execution for the
critical time interval, where the tasks to be executed during
the critical time interval are scheduled and/or organized
(hereinafter, simply “schedule”). From block 104, method
100 may proceed to block 106, repeat identify and schedule
if more tasks to schedule. At block 106, method 100 may
determine whether there are further tasks remain to be
scheduled, and if so, method 100 repeat blocks 102 and 104.
The process may continue until all tasks are scheduled.

In various embodiments, as illustrated, identifying critical
time intervals at block 102 may include selecting a feasible
time interval with the largest lower bound average operating
speed as the critical time interval, block 112. In various
embodiments, the [0,T] period may be considered as having
a number of feasible time intervals, and identifying critical
time interval 102 comprises selecting one of these feasible
time intervals. In various embodiments, each of the feasible
time intervals has an average operating speed, which is the
average operating speed needed to execute the tasks to be
executed during the feasible time interval. Further, each of
the feasible time intervals has a lower bound average
operating speed, to be described in more detail below. And
the selecting may be based at least in part on these lower
bounds, more specifically, the feasible time interval with the
largest lower bound average operating speed may be
selected as the critical time interval.

Continuing to refer to FIG. 1, block 104, schedule task
execution for the critical time period, may include schedule
task by earliest deadline, block 122, and select a real or
virtual operating mode, block 124. At block 122, method
100 may schedule the tasks to be executed during the critical
time interval by the order of the tasks’ execution completion
deadlines, that is, a task with an earlier execution completion
deadline is scheduled for execution before another task with
a later execution completion deadline. At block 124, method
100 may conditionally select either a real or a virtual



US 9,471,376 B2

5

operating mode for the critical time interval. In various
embodiments, the real or virtual operating mode may be
selected as follows:

if (3
® b-a
5 boa-oy <7
s2—s%8
= a0 X(b-a)
sx8—sl
n= ] X(b-a)
else if 55 = 5,
n=0
s (C)]

n= Ex(b—a)

where

s; and s, are two respective operating speeds of two
operating modes;

s* is the virtual operating speed achieved by operating at
s, and s, for time t, and t, respectively,

d,; is a delay incurred by the scheduled task as it becomes
idle, when the computing platform switches from operating
mode i to operating mode j, and

s*s 1s the virtual operating speed having taken into
consideration 9.

As will be described in more details below, in various
embodiments, s, and s, may be two respective operating
speeds of two operating modes on a convexity envelope of
the energy and speed relationship of the target computing
platform (also may be referred to as convexity energy-speed
envelope).

Still referring to FIG. 1, block 106, repeat identify and
schedule if more tasks to schedule, may include remove
critical time interval and adjust arrival times and execution
completion deadlines, block 132. At block 132, method 100
may remove the immediately identified critical time interval
(with tasks to be executed during the interval now sched-
uled) from [0,T] period, and adjust the arrival times and
execution completion deadlines to reflect the removal of the
immediately identified critical time interval, to effectively
reformulate the problem for another iteration. As an
example, if [0,T] spans a 60 min period, and the immediate
identified critical time period was identified to be the 41°* to
45 minute, after having their tasks scheduled, the 41% to
45" minute interval is removed from the [0,T] period, with
the task arrival times and/or execution completion deadlines
after the 45” minute, updated to be 15 minutes earlier,
effectively reformulating the problem as a problem with a
[0,T] period spanning 45 min.

Accordingly, method 100 may be not only optimally, but
may efficiently, solve %(t), which defines the scheduled task
at time t such that the total energy consumption during the
[0,T] period is minimized or reduced to a desired level.
Further, method 100 may be independent of the energy and
speed functional relationship of the target computing plat-
form. In other words, method 100 may optimally and
efficiently solve y(t) regardless of whether the energy and
speed functional relationship of the target computing plat-
form is non-convex or convex. The reason method 100 may
be optimal, and independent of the energy and speed func-
tional relationship will be explained in the description to
follow. For ease of understanding, without loss of generality
(and applicability to a target computing platform), the
description will be presented in terms of a processor.

10

15

20

25

30

45

50

60

6

Further, before presenting the description, it should be
noted that while method 100 has been described thus far for
scheduling a plurality of tasks, the description should not be
construed as limiting method 100 to scheduling a multitude
(two or more) tasks. Method 100 may be practiced in
scheduling a single task. For the single task situation, there
is one time interval (defined by the arrival and deadline of
the single task), and by definition, the time interval is the one
and only critical time interval.

First, recall a couple of relatively important overhead
caused by dynamic scheduling techniques may be the delay
and energy overheads. Specially, when the operation mode
of a processor is changing while a task is under execution,
this overhead becomes more significant because of the delay
and energy dissipations resulting from memory access and
recovery. Therefore, for each pair of operation modes, there
are two overhead measures: €, and 9, where €, is the energy
overhead when switching from mode i to j. As described
earlier, 8, is the delay caused by switching operation mode,
during which time, the scheduled task becomes idle.

When the mode switching is a result of supply (V ;) and
body-bias voltage (V,,) change, the delay and energy over-
heads can be stated as

= % 2 * *2
€,;=C, Vddz-_Vddj* +C ViV,

®

Q)

where C, represents power rail capacitance, and C; is the
total substrate and well capacitance. Since transition times
forV,; and V, are different, the two constants pv ,,; and pv,,
are used to calculate both time overheads independently. If
there exists any other overhead in state switching, additional
terms may be added to equations 5 and 6.

Therefore, the intensity of the interval [a, b], i.e., the
number of clock cycles required to execute the tasks during
the interval, may defined to be:

_ * * * *
By max (pvas Vs~ Vaa™ PVos™V s Vs, )

Ri @)

gl = =

Viile;, b]c!

which is the average speed required to execute all the
tasks that are within the interval 1. Accordingly, for uniform
switching capacity, g(I) is the lower bound on the average
speed in the interval 1. For non-uniform switching capacity,
g(1) may be modified accordingly to reflect the non-unifor-
mity. For ease of understanding, the description will assume
uniform switching capacity.

Thus, to find an optimal scheduling, the processor may be
arranged such that the processor operates at the average
speed no less that g(I) with an energy consumption which
would yield to an optimal solution. Therefore, to solve this
scheduling problem is to make a virtual subjective mapping
of speed to energy in the [O,s,,,, ] without compromising
(S ,max 18 the maximum possible speed that the processor can
run at). Using such a curve a processor can be considered as
being virtually run at any speed.

FIGS. 2a-2b illustrate how a processor may operate at any
virtual operating speed, in accordance with various embodi-
ments of the present disclosure. Assume a processor, as
illustrated in FIG. 24, has two operation modes s, and s,. In
order to run the processor at speed s* (s, # s* #s,) for a given
interval [a, b], the processor may be run at s, for t; seconds
and s, for t, seconds where for t; and t, meaning:



US 9,471,376 B2

7
— s 8
11:52 d X (b—a) ®
S$2 =51
*— 9
12:5 Slx(b—a) ®
Sy =851

where

s, and s, are two respective operating speeds of two
operating modes; and

s* is the virtual operating speed achieved by operating at
s, and s, for time t, and t, respectively.

Accordingly, a processor may operate in any virtual
operating speed as illustrated by graph 202 in FIG. 24, and
t, and t, may be determined using the above formulas and as
illustrated by graph 204 in FIG. 264.

Thus, when §,, a delay is incurred by the scheduled task
as it becomes idle when the processor switches from oper-
ating mode 1 to operating mode j, the relationships between
s*, s,, S5, t;, and t, are given by equations (3) and (4) as
earlier described. Equation 4 shows the case where due to
switching delay overhead, the virtual speed is larger than s,
and therefore the processor only runs at s, for the portion of
time.

FIG. 3 illustrates a lower convex curve for an energy-
speed domain, in accordance with various embodiments of
the present disclosure. As illustrated, for a computing plat-
form with a set of energy/speed operating modes, regardless
whether the energy-speed functional relationship is non-
convex or convex, a lower convex curve (also may be
referred to as convexity energy-speed envelope) can be
created, by assuming the energy consumption for the lowest
operating speeds to be the same as the known energy
consumption for the lowest known operating speed, that is,
by extending the curve on the lower-left side to cover the
entire speed axis, as illustrated by curve 302.

The points in curve 302 can be represented by M={(e',,
s'), ..., (¢, ')} sorted in non-decreasing order with
respect to s';s. The resulting energy-speed curve 302 can be
stated as:

gj(s) =] f0<s=<s! 10

)
€~
Ei5)=
=5

i

’
i

(s—si_)+ei_si <s<s; Vi<i=zg

FIG. 4 illustrates a modified lower convex curve for an
energy-speed domain, taking into consideration of intra-task
energy overhead caused by mode switching, in accordance
with various embodiments of the present disclosure. As
illustrated, to consider the intra-task energy overhead caused
by mode switching, each line segment [(e,, s,), (e, 5;)] in the
€,(s) is replaced by [(e;, s,), (e, s))+€;] where €, is the
normalized switching overhead, this function is called €',(s).
Applying a monotone curve fit, €'(s) as illustrated by curve
402 may be created as follows:

€,(s)=e’ if 0<s=s’,

€,(s)=min(e'(s), e’)s’;_ <s<s'V1<isq

1)

€,(s) can potentially introduce new points in the energy-
speed domain which where disregarded as a result of the
construction of the lower convex curve. For example, m' is
a point where as a result of energy overhead consideration,
it may be used to achieve better performance. The energy-
speed curve is thus modified as M=MU{m*} (considering

10

25

30

40

45

60

8

new points such as m*). Hereinafter, this virtual energy-
speed curve will be referred to as € (s).

Interval I* is said to be critical if g(I*) is maximum for all
feasible intervals in [0,T]. R* is the number of clock cycles
required to execute all tasks that lie inside I*. Therefore,
I*=[a;, b;] for some tasks i and j.

Let

*

s =800 = g

Assume that in order to achieve minimum energy consump-
tion during I*, task(s) in I* is (are) run at S={s*, ..., s* }
for the time percentages of (a,, . . ., a,) respectively
(20,=100%). Then according to the present disclosure, the
operation modes are consecutive in €,(s).

Let the duration of II*|=T and assume sg€S where
s*<s,<s*; and (j-i) is minimum. In other words s, lies
between two operation speeds in S and all the intermediate
speeds are not in S. Adding s, to S can decrease the total
energy consumption during I. Since s*,<s <s* , there exist f3
and v such that

S =Bs*Hys™; (12)

Without the loss of generality, assume o,=c,. Therefore,
the normalized energy consumption (i.e. per clock cycle)
during s*; and s*; can be stated as:

Eij=ae +ae; = (13)

Y a;f - ye;
le*_+ J te*

' af -y
B B

" "
el + +ey z ey + G €+ ey

Which means that when the processor is run at s, it may
reduce the energy consumption during virtual speed of s,
when the processor is run at s*; and s**,. Therefore S may
contain consecutive operation modes in € (s).

Let s*=g(I*). If the minimum energy consumption during
I*, requires running the task in I* at consecutive speeds:
S={s*,, ..., s*,} for the time percentages (a,, . . . , @)
respectively then p=2.

Assume s*<s_<s*, . For all s*<s*, the approach in the
above argument can be applied here and eliminate operation
at s*; by increasing c.i and a.;,, accordingly and reduce total
power consumption during 1.

Finally, in the optimal scheduling, the critical interval I*
is run at virtual mode of e(g(I*)),g(I*). If € (s) was a convex
curve the optimality would be followed. Although € (s) is
not convex in principle, it is proven that it has the convexity
property. The reason why € (s) is not visually convex is the
fact that €,(s) is a conditional graph. In other words € (s) is
minimum energy consumption at different speeds when each
speed is virtually achieved through one or two operation
modes.

€ (as+(1-a)so)sae,(s)+(1-a)e,(s2) (14)

The interpretation of Equation 14 may be that energy
consumption at speed as, +(1-a)s, may be less the weighted
energy consumption when the processor is running at os,
and (1-a)s,. Therefore the overhead energy €,, must be
taken into account. According to Equation 11

e (as +(1-a)sy)=min(ae,(s )+{1-a)e,(s;)+
€12,€,(52))s0€, (5 )+H(1- Qe (s2) €15

(15)



US 9,471,376 B2

9

Equation 15 proves the correctness of the claim and the
convexity of € , in use. Therefore, method 100 of FIG. 1 may
yield an optimal solution, in particular, when the virtual
operating mode is construed using operating modes on the
convexity energy-speed envelope of a target computing
platform.

FIG. 5 illustrates an example computing device, in accor-
dance with various embodiments of the present disclosure.
In a very basic configuration 501, computing device 500
typically includes one or more processors 510 and system
memory 520. A memory bus 530 may be used for commu-
nicating between the processor 510 and the system memory
520.

Depending on the desired configuration, processor 510
may be of any type including but not limited to a micro-
processor (uP), a microcontroller (uC), a digital signal
processor (DSP), or any combination thereof. Processor 510
may include one more levels of caching, such as a level one
cache 511 and a level two cache 512, a processor core 513,
and registers 514. An example processor core 513 may
include an arithmetic logic unit (ALU), a floating point unit
(FPU), a digital signal processing core (DSP Core), or any
combination thereof. An example memory controller 515
may also be used with the processor 510, or in some
implementations the memory controller 515 may be an
internal part of the processor 510.

Depending on the desired configuration, the system
memory 520 may be of any type including but not limited to
volatile memory (such as RAM), non-volatile memory (such
as ROM, flash memory, etc.) or any combination thereof.
System memory 520 may include an operating system 521,
one or more applications 522, and program data 524. Appli-
cation 522 may include programming instructions 523 pro-
viding logic to implement the above described scheduling of
task execution for one or more tasks for a target computing
platform, including in particular, the selection of a virtual
operating mode using operating modes lying on the convex-
ity energy-speed envelope for the target computing platform.
Program Data 524 may include the applicable data 525
associated with the scheduling operations or instruction
execution.

Computing device 500 may have additional features or
functionality, and additional interfaces to facilitate commu-
nications between the basic configuration 501 and any
required devices and interfaces. For example, a bus/interface
controller 540 may be used to facilitate communications
between the basic configuration 501 and one or more data
storage devices 550 via a storage interface bus 541. The data
storage devices 550 may be removable storage devices 551,
non-removable storage devices 552, or a combination
thereof. Examples of removable storage and non-removable
storage devices include magnetic disk devices such as
flexible disk drives and hard-disk drives (HDD), optical disk
drives such as compact disk (CD) drives or digital versatile
disk (DVD) drives, solid state drives (SSD), and tape drives
to name a few. Example computer storage media may
include volatile and nonvolatile, removable and non-remov-
able media implemented in any method or technology for
storage of information, such as computer readable instruc-
tions, data structures, program modules, or other data.

System memory 520, removable storage 551 and non-
removable storage 552 are all examples of computer storage
media. Computer storage media includes, but is not limited
to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other

10

15

20

25

30

35

40

45

50

55

60

65

10

medium which may be used to store the desired information
and which may be accessed by computing device 500. Any
such computer storage media may be part of conputing
device 500.

Computing device 500 may also include an interface bus
542 for facilitating communication from various interface
devices (e.g., output interfaces, peripheral interfaces, and
communication interfaces) to the basic configuration 501 via
the bus/interface controller 540. Example output devices
560 include a graphics processing unit 561 and an audio
processing unit 562, which may be configured to commu-
nicate to various external devices such as a display or
speakers via one or more A/V ports 563. Example peripheral
interfaces 570 include a serial interface controller 571 or a
parallel interface controller 572, which may be configured to
communicate with external devices such as input devices
(e.g., keyboard, mouse, pen, voice input device, touch input
device, etc.) or other peripheral devices (e.g., printer, scan-
ner, etc.) via one or more I/O ports 573. An example
communication device 580 includes a network controller
581, which may be arranged to facilitate communications
with one or more other computing devices 590 over a
network communication link via one or more communica-
tion ports 582.

The network communication link may be one example of
a communication media. Communication media may typi-
cally be embodied by computer readable instructions, data
structures, program modules, or other data in a modulated
data signal, such as a carrier wave or other transport mecha-
nism, and may include any information delivery media. A
“modulated data signal” may be a signal that has one or
more of its characteristics set or changed in such a manner
as to encode information in the signal. By way of example,
and not limitation, communication media may include wired
media such as a wired network or direct-wired connection,
and wireless media such as acoustic, radio frequency (RF),
microwave, infrared (IR) and other wireless media. The term
computer readable media as used herein may include both
storage media and communication media.

Computing device 500 may be implemented as a portion
of a small-form factor portable (or mobile) electronic device
such as a cell phone, a personal data assistant (PDA), a
personal media player device, a wireless web-watch device,
a personal headset device, an application specific device, or
a hybrid device that include any of the above functions.
Computing device 500 may also be implemented as a
personal computer including both laptop computer and
non-laptop computer configurations.

FIG. 6 illustrates an example article of manufacture
having a computer program product, in accordance with
various embodiments of the present disclosure. The example
computer program product 600 may comprise a computer
readable storage medium 632 and a plurality of program-
ming instructions 634 stored in the computer readable
storage medium 632. In various ones of these embodiments,
the programming instructions 634 may include instructions
for identifying a critical time interval. In various embodi-
ments, programming instructions 634 may also include
instructions for scheduling execution of one or more tasks to
be executed during the identified critical time interval. The
execution to be performed on a target computing platform.
In various embodiments, the scheduling may include selec-
tion of a virtual operating mode constructed from operating
modes lying on the convexity energy-speed envelope of as
described earlier. In still other embodiments, programming



US 9,471,376 B2

11

instructions 634 may further include instructions for repeat-
ing the identifying and the scheduling for the tasks remain-
ing to be scheduled.

Embodiments may have some or all of the instructions
depicted in FIG. 6. Embodiments of computer program
product 600 may have other instructions in accordance with
embodiments described herein. The computer readable stor-
age medium 632 may take a variety of forms including, but
not limited to, volatile and persistent memory, such as, but
not limited to, a compact disk (CD), a digital versatile disk
(DVD), a solid-state drive, a hard drive, and so forth.
Embodiments are not limited to any type or types of com-
puter program products.

Claimed subject matter is not limited in scope to the
particular implementations described herein. For example,
some implementations may be in hardware, such as
employed to operate on a device or combination of devices,
for example, whereas other implementations may be in
software and/or firmware. Likewise, although claimed sub-
ject matter is not limited in scope in this respect, some
implementations may include one or more articles, such as
a storage medium or storage media. This storage media, such
as CD-ROMs, computer disks, flash memory, or the like, for
example, may have instructions stored thereon, that, when
executed by a system, such as a computer system, comput-
ing platform, or other system, for example, may result in
execution of a processor in accordance with claimed subject
matter, such as one of the implementations previously
described, for example. As one possibility, a computing
platform may include one or more processing units or
processors, one or more input/output devices, such as a
display, a keyboard and/or a mouse, and one or more
memories, such as static random access memory, dynamic
random access memory, flash memory, and/or a hard drive.

There is little distinction left between hardware and
software implementations of aspects of systems; the use of
hardware or software is generally (but not always, in that in
certain contexts the choice between hardware and software
can become significant) a design choice representing cost vs.
efficiency tradeoffs. There are various vehicles by which
processes and/or systems and/or other technologies
described herein can be effected (e.g., hardware, software,
and/or firmware), and that the preferred vehicle will vary
with the context in which the processes and/or systems
and/or other technologies are deployed. For example, if an
implementer determines that speed and accuracy are para-
mount, the implementer may opt for a mainly hardware
and/or firmware vehicle; if flexibility is paramount, the
implementer may opt for a mainly software implementation;
or, yet again alternatively, the implementer may opt for some
combination of hardware, software, and/or firmware.

In some embodiments, several portions of the subject
matter described herein may be implemented via Applica-
tion Specific Integrated Circuits (ASICs), Field Program-
mable Gate Arrays (FPGAs), digital signal processors
(DSPs), or other integrated formats. However, those skilled
in the art will recognize that some aspects of the embodi-
ments disclosed herein, in whole or in part, can be equiva-
lently implemented in integrated circuits, as one or more
computer programs running on one or more computers (e.g.,
as one or more programs running on one or more computer
systems), as one or more programs running on one or more
processors (e.g., as one or more programs running on one or
more microprocessors), as firmware, or as virtually any
combination thereof, and that designing the circuitry and/or
writing the code for the software and/or firmware would be
well within the skill of one of skill in the art in light of this

10

15

20

25

30

35

40

45

50

55

60

65

12

disclosure. In addition, those skilled in the art will appreciate
that the mechanisms of the subject matter described herein
are capable of being distributed as a program product in a
variety of forms, and that an illustrative embodiment of the
subject matter described herein applies regardless of the
particular type of signal bearing medium used to actually
carry out the distribution. Examples of a signal bearing
medium include, but are not limited to, the following: a
recordable type medium such as a floppy disk, a hard disk
drive, a Compact Disc (CD), a Digital Video Disk (DVD),
a digital tape, a computer memory, etc.; and a transmission
type medium such as a digital and/or an analog communi-
cation medium (e.g., a fiber optic cable, a waveguide, a
wired communications link, a wireless communication link,
etc.).

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can
translate from the plural to the singular and/or from the
singular to the plural as is appropriate to the context and/or
application. The various singular/plural permutations may
be expressly set forth herein for sake of clarity.

Although the present disclosure has been described in
terms of the above-illustrated embodiments, it will be appre-
ciated by those of ordinary skill in the art that a wide variety
of alternate and/or equivalent implementations calculated to
achieve the same purposes may be substituted for the
embodiments shown and described without departing from
the scope of the present disclosure. Those with skill in the art
will readily appreciate that embodiments in accordance with
the present disclosure may be implemented in a very wide
variety of embodiments. This description is intended to be
regarded as illustrative instead of restrictive.

The invention claimed is:

1. A method to schedule a task to be executed on a
computing platform, where the computing platform is
capable to operate at two or more operating speeds, the
method comprising:

determining respective lengths of clock cycles at the two

or more operating speeds;

determining, at least partially based on the respective

lengths of the clock cycles, a number of clock cycles on

the computing platform to complete the task;

determining, at least partially based on the number of

clock cycles to complete the task, a virtual operating

speed of the computing platform to perform the task by

or before a completion deadline of the task so as to

achieve a particular energy consumption,

wherein the virtual operating speed is based on opera-
tion of the computing platform at a first operating
speed for a first specified time and at a second
operating speed for a second specified time,

wherein the first, virtual and second operating speeds
are on a convex enclosure curve that is at least
partially based on energy consumption for the two or
more operating speeds,

wherein the virtual operating speed is higher than the
first operating speed but lower than the second
operating speed, and

wherein the first and second operating speeds are two
closest operating speeds to the virtual operating
speed; and

scheduling the task to be executed on the computing

platform at the virtual operating speed.



US 9,471,376 B2

13

2. The method of claim 1, further comprising:

determining a delay, wherein the task is idle during the

delay when the computing platform switches between
the first operating speed and the second operating
speed,

wherein scheduling the task to be executed on the com-

puting platform at the virtual operating speed includes
scheduling the task having taken the delay into con-
sideration.

3. The method of claim 2, wherein determining the delay
further comprises determining a change in at least one of a
bias voltage and a supply voltage of the computing platform.

4. The method of claim 1, further comprising scheduling
the task to be executed at least partially based on an energy
dissipated when the computing platform switches between
operating at the two closest operating speeds on the convex
enclosure curve.

5. The method of claim 1, further comprising calculating
the virtual operating speed at least partially based on the two
closest operating speeds in the convex enclosure curve
operating for respective periods of time.

6. The method of claim 5, further comprising scheduling
the task to be executed at least partially based on an energy
dissipated when the computing platform switches between
operating at the two closest operating speeds on the convex
enclosure curve.

7. The method of claim 6, wherein the energy dissipated
is determined based on a power rail capacitance of the
computing platform and a substrate and well capacitance of
the computing platform.

8. An apparatus effective to schedule a task to be executed
on a computing platform, where the computing platform is
configured to operate at two or more operating speeds, the
apparatus comprising:

a processor effective to:

determine respective lengths of clock cycles at the two
or more operating speeds;

determine, at least partially based on the respective
lengths of the clock cycles, a number of clock cycles
on the computing platform to complete the task;

determine, at least partially based on the number of
clock cycles to complete the task, a virtual operating
speed of the computing platform to perform the task
by or before a completion deadline of the task so as
to achieve a particular energy consumption,

wherein the virtual operating speed is based on opera-
tion of the computing platform at a first operating
speed for a first specified time and at a second
operating speed for a second specified time,

wherein the first, virtual and second operating speeds
are on a convex enclosure curve that is at least
partially based on energy consumption for the two or
more operating speeds,

wherein the virtual operating speed is higher than the
first operating speed but lower than the second
operating speed, and

wherein the first and second operating speeds are two
closest operating speeds to the virtual operating
speed; and

schedule the task to be executed on the computing
platform at the virtual operating speed.

9. The apparatus of claim 8, wherein the processor is
further effective to determine a delay, wherein the task is idle
during the delay when the computing platform switches
between the first operating speed and the second operating
speed, and wherein the task is scheduled having taken the
delay into consideration.

10

15

20

25

30

35

40

45

50

55

60

65

14

10. The apparatus of claim 9, wherein the delay is further
determined based on at least one of a change in a bias
voltage and a change in a supply voltage of the computing
platform.

11. The apparatus of claim 8, wherein the processor is
further effective to calculate the virtual operating speed at
least partially based on the two closest operating speeds in
the convex enclosure curve in operation for respective
periods of time.

12. The apparatus of claim 8, wherein the processor is
further effective to schedule the task to be executed at least
partially based on an energy dissipated when the computing
platform switches between operation at the two closest
operating speeds on the convex enclosure curve.

13. The apparatus of claim 11, wherein the processor is
further effective to schedule the task to be executed at least
partially based on an energy dissipated when the computing
platform switches between operation at the two closest
operating speeds on the convex enclosure curve.

14. The apparatus of claim 13, wherein the energy dissi-
pated is determined based on a power rail capacitance of the
computing platform and a substrate and well capacitance of
the computing platform.

15. A non-transitory computer-readable medium that
includes computer-executable instructions stored thereon to
schedule a task to be executed on a computing platform,
where the computing platform is capable to operate at two
or more operating speeds, the instructions being executable
by one or more processors to perform or cause to be
performed:

determining, at least partially based on respective lengths

of clock cycles at the two or more operating speeds, a
number of clock cycles on the computing platform to
complete the task;

determining, at least partially based on the number of

clock cycles to complete the task, a virtual operating

speed of the computing platform to perform the task by

or before a completion deadline of the task so as to

achieve a particular energy consumption,

wherein the virtual operating speed is based on opera-
tion of the computing platform at a first operating
speed for a first specified time and at a second
operating speed for a second specified time,

wherein the first, virtual, and second operating speeds
are on a convex enclosure curve that is at least
partially based on energy consumption for the two or
more operating speeds,

wherein the virtual operating speed is higher than the
first operating speed but lower than the second
operating speed, and

wherein the first and second operating speeds are two
closest operating speeds to the virtual operating
speed; and

scheduling the task to be executed on the computing

platform at the virtual operating speed.

16. The non-transitory computer-readable medium of
claim 15, wherein the instructions are executable by one or
more processors to further perform or cause to be per-
formed:

determining a delay, wherein the task is idle during the

delay when the computing platform switches between
the first operating speed and the second operating
speed,

wherein scheduling the task to be executed on the com-

puting platform at the virtual operating speed includes
scheduling the task having taken the delay into con-
sideration.



US 9,471,376 B2

15

17. The non-transitory computer readable medium of
claim 15, wherein the instructions are executable by one or
more processors to further perform or cause to be per-
formed:

calculating the virtual operating speed at least partially

based on the two closest operating speeds in the convex
enclosure curve operating for respective periods of
time.

18. The non-transitory computer-readable medium of
claim 15, wherein the instructions are executable by one or
more processors to further perform or cause to be per-
formed:

scheduling the task to be executed at least partially based

on an energy dissipated when the computing platform
switches between operation at the two closest operating
speeds on the convex enclosure curve.

19. The non-transitory computer-readable medium of
claim 18, wherein the energy dissipated is calculated based
on at least one of a change in a bias voltage and a change in
a supply voltage of the computing platform.

20. The non-transitory computer-readable medium of
claim 18, wherein the energy dissipated is calculated by
determination of a power rail capacitance and a substrate
and well capacitance of the computing platform.

#* #* #* #* #*

10

15

20

25

16



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,471,376 B2 Page 1of1
APPLICATION NO. 0 14/171323

DATED : October 18, 2016

INVENTOR(S) : Potkonjak

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

In Column 1, Lines 5-6, delete “CROSS REFERENCE TO RELATED APPLICATIONS
APPLICATION” and insert -- CROSS-REFERENCE TO RELATED APPLICATION --, therefor.

In Column 1, Line 8, delete “§120” and insert -- § 120 --, therefor.
In Column 3, Line 15, delete “operation’s” and insert -- operations --, therefor.
In Column 8, Line 39, delete “s**i.” and insert -- s*j. --, therefor.

In Column 10, Line 3, delete “conputing” and insert -- computing --, therefor.

Signed and Sealed this
Fourteenth Day of February, 2017

Debatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office



